أشكال مختلفة من المغنطيس
المغنطيس والمغنطيسية المغنطيسية هي القوة التي تؤثر بها التيارات الكهربائية على التيارات الكهربائية الأخرى. ويمكن توليد المغنطيسية بتحريك الإلكترونات في ذرات مواد معينة تسمى المغانط، ويسمى الواحد منها المغنطيس. ويمكن إنتاج المغنطيسية أيضًا بنقل التيار الكهربائي العادي عبر ملف سلكي يسمى المغنطيس الكهربائي. وقد تسبب القوة المغنطيسية الانجذاب أو التنافر، أي بإمكان القوة المغنطيسية جذب المغانط الأخرى، بعضها إلى بعض، أو جعلها تتنافر، بعضها عن بعض.
وللمغانط أشكال متعددة، أكثرها شيوعًا القضبان والأقراص السميكة والمربعات والمستطيلات. فمغنطيس حدوةالحصان مثلاً، مغنطيس قضيبي مثني في شكل قوس.
وللمغانط استخدامات متنوعة عديدة
فبعضها تُلصق بفلزات معينة، مما يجعلها مفيدة في صنع أدوات الربط والمزالج. ويتطلب تشغيل الأدوات والأجهزة والقطارات، التي تعمل بالكهرباء، استخدام المغانط، حيث تتكون كل المحركات الكهربائية أساسًا من موصل كهربائي دوار، موضوع بين قطبي مغنطيس ثابت. وتستخدم مغانط ضخمة في تحريك الخُرد الحديدية والفولاذية. وتخزن مغانط صغيرة الأصوات والصور على الشرائط السمعية والبصرية. وتساعد مغانط في الهواتف والراديوهات وأجهزة التلفاز في تغيير النبضات الكهربائية إلى أصوات. ويستخدم العلماء مغانط قوية للاحتفاظ بالغازات في بحوث الطاقة النووية.
وبعض الأحجار والمعادن والنيازك مغانط طبيعية
والأرض نفسها مغنطيس عملاق، وكذلك الشمس والنجوم الأخرى ومعظم الكواكب. وتحتوي بعض الحشرات والطيور والأسماك على مغانط صغيرة جدًا في أجسامها. ويعتقد علماء الأحياء أن هذه المغانط قد تساعد الحيوانات على استكشاف مساراتها أثناء هجراتها.
ماذا تفعل المغانط
الأقطاب المغنطيسية
يسمى المغنطيس ذو القطبين المغنطيس الثنائي القطب، ومن أمثلته المغنطيس القضيبي. وعند تعليق مغنطيس قضيبي بربطه بخيط عند منتصفه يدور المغنطيس حتى يتجه أحد طرفيه إلى الشمال والطرف الآخر إلى الجنوب. ويسمى الطرف الذي يتجه إلى الشمال القطب الشمالي، والطرف الذي يتجه إلى الجنوب القطب الجنوبي. وفي المغنطيس القرصي والمغانط المسطحة الأخرى يمثل الوجهان المسطحان للمغنطيس قطبي المغنطيس. وعند تكسير المغنطيس أو قطعه إلى نصفين، تكتسب كل قطعة قطبًا مغنطيسيًا شماليًا وآخر جنوبيًا.
الانجذاب والتنافر
تسبب المغنطيسية انجذاب الأقطاب غير المتشابهة، بعضها إلى بعض، وتنافر الأقطاب المتشابهة، بعضها عن بعض. فعند تقريب قطب شمالي لمغنطيس إلى قطب جنوبي لمغنطيس آخر تجذب القوة المغنطيسية المغنطيسين، كلاً منهما إلى الآخر، بينما يؤدي تقريب قطب شمالي إلى قطب شمالي، أو قطب جنوبي إلى قطب جنوبي، إلى تنافر القطبين، كل منهما عن الآخر. وعند تعليق مغنطيس قضيبي بين طرفي مغنطيس حدوة الحصان يتحرك القضيب المغنطيسي بحيث يتجه قطبه الشمالي بعيدًا عن القطب الشمالي لمغنطيس حدوة الحصان.
المجال المغنطيسي
يمكن توضيحه في شكل خطوط وهمية تبدأ من القطب الشمالي للمغنطيس وتنتهي بالقطب الجنوبي. ويكون المجال المغنطيسي القضيبي أقوى بالقرب من قطبي المغنطيس، حيث تكون الخطوط قريبة بعضها من بعض.
المجالات المغنطيسية
يقال عن المنطقة المحيطة بالمغنطيس، والتي يمكن الشعور فيها بالقوة المغنطيسية، إنها تحتوي على مجال مغنطيسي، وهو منطقة غير مرئية. ويمكنك تصوير المجال المغنطيسي لمغنطيس قضيبي بوضع قطعة ورقية فوق المغنطيس، ونثر برادة الحديد على الورقة، حيث تتجمع برادة الحديد عند القطبين، وتكوِّن نمطًا حول المغنطيس يمثل مجاله المغنطيسي. ويمكن تصور المجال المغنطيسي باعتباره مكونًا من مجموعة من الخطوط الوهمية المسماة خطوط المجال أو خطوط الفيض أو خطوط القوة،، حيث يمكننا أن نتصور أن هذه الخطوط تنطلق من القطب الشمالي للمغنطيس، وتتقوس حول المغنطيس عائدة إليه مرة أخرى عند قطبه الجنوبي. وتتقارب الخطوط أكثر بالقرب من القطبين، حيث يبلغ المجال المغنطيسي أقصى قوته.
ويؤثر المجال المغنطيسي بقوى على المغانط القريبة ليجعلها تصطف على امتداد خطوط المجال. فإبرة البوصلة المغنطيسية، على سبيل المثال، مغنطيس قضيبي رفيع، يشير عادة إلى الشمال على امتداد أحد خطوط المجال المغنطيسي الأرضي. ولكن وضع مغنطيس قضيبي قوي بالقرب من البوصلة يجعل الإبرة تغير اتجاهها بحيث تكون على امتداد أحد خطوط مجال المغنطيس القضيبي.
وتقاس قوة المجال المغنطيسي بوحدة تسمى الجاوس أو التسلا، حيث تساوي التسلا 10,000 جاوس. وتبلغ قوة المجال المغنطيسي الأرضي عند سطح الأرض حوالي 0,5 جاوس. وقد تبلغ قوة المجال المغنطيسي لمغنطيس حدوة الحصان، بالقرب من قطبيه، عدة مئات من الجاوسات. وربما بلغت قوة المجالات المغنطيسية للمغانط المستخدمة في الصناعة أكثر من 20,000 جاوس (2 تسلا).
المغنطة
يجذب المغنطيس الحديد والفولاذ والنيكل وبعض المواد الأخرى، وعندئذ تتحول المواد المنجذبة نفسها إلى مغانط في عملية تسمى المغنطة. فالإبرة الفولاذية الموضوعة بالقرب من مغنطيس، على سبيل المثال، تتمغنط، وتصبح بالتالي قادرة على جذب إبرة أخرى. وتحدث المغنطة لأن المغنطيس يجعل جسيمات في ذرات الإبرة، تسمى الإلكترونات، تصطف على امتداد خطوط المجال المغنطيسي، مما يجعل الذرات المحتوية على الإلكترونات المصطفة تعمل وكأنها مغانط قضيبية بالغة الصغر.
أنواع المغانط
معظم المواد المصنوعة من الألومنيوم والخرسانة والنحاس والقطن والزجاج والذهب والورق والمطاط والفضة والخشب مواد غير مغنطيسية. فالمغانط لاتجذب هذه المواد ولا تتنافر معها، وتمر المجالات المغنطيسية عبرها دون أن تضعف. ولكن مواد أخرى، تسمى المواد المغنطيسية، تصبح ممغنطة عند تعريضها لمجال مغنطيسي.
المغانط المؤقتة
تصنع من مواد مثل الحديد والنيكل، وتسمى المواد المغنطيسية اللينة، لأنها لا تستعيد مغنطيسيتها خارج المجال المغنطيسي القوي. فالإبرة الحديدية الممغنطة، على سبيل المثال، تفقد مغنطيسيتها عند إبعادها عن المجال المغنطيسي.
المغانط الدائمة
تحتفظ بمغنطيسيتها بعد مغنطتها، ولذلك تسمى المواد المغنطيسية الصلبة. والعديد من المغانط الدائمة القوية سبائك (خلائط) تتكون من الحديد أو النيكل أو الكوبالت، مخلوطًا بمواد أخرى. وتشمل هذه السبائك المغنطيسية الألنيكو، وهو مجموعة من السبائك المحتوية عادة على خليط من الألومنيوم والنيكل والكوبالت والحديد والنحاس؛ وسبيكة من الكوبالت والكروم تسمى السبيكة الكوبالتية الكرومية. وقد أنتجت سبائك محتوية على عناصر فلزية تسمى عناصر الأتربة النادرة بعضًا من أقوى المغانط الدائمة. وتشمل هذه السبائك السبيكة الكوبالتية السمريومية، المكونة من خليط من الكوبالت وعنصر السمريوم الذي ينتمي إلى عناصر الأتربة النادرة؛ وتوليفة من الحديد والبورون وعنصر ترابي نادر يسمى النيوديميوم. وتتكون مجموعة أخرى مهمة من السبائك المغنطيسية، تسمى الحديديات، من الحديد والأكسجين وعناصر أخرى. وينتمي إلى هذه المجموعة المغنطيس المعروف باسم المجنتيت أو الحجر المغنطيسي، وهو أفضل مغنطيس دائم طبيعي معروف.
ويمكن تحويل بعض المواد المغنطيسية اللينة إلى مغانط دائمة ضعيفة. فالإبرة الحديدية في البوصلة، على سبيل المثال، يمكن تحويلها إلى مغنطيس دائم، بطرقها في اتجاه واحد بمغنطيس.
قاعدة اليد اليمنى
توضح هذه القاعدة اتجاه المجال المغنطيسي حول سلك يحمل تيارًا كهربائيًا. فعندما يشير إبهام اليد اليمنى في اتجاه سريان التيار في سلك مستقيم (أقصى اليمين) تلتف بقية الأصابع حول السلك في اتجاه المجال. أما إذا كان السلك الحامل للتيار ملتويًا في شكل ملف فإن المجال المغنطيسي يكون أقوى. ويسمى مثل هذا الملف الوشيعة. ويمكن تعيين اتجاه المجال المغنطيسي المحيط بالوشيعة (إلى اليمين) بلف الأصابع حول الملف في اتجاه التيار، حيث يشير الإبهام عندئذ إلى القطب الشمالي للوشيعة، ويوضح اتجاه المجال. وتستخدم قاعدة اليد اليمنى عند التفكير في التيار على أنه سريان شحنات كهربائية موجبة.
المغانط الكهربائية
مغانط مؤقتة تنتج بالتيار الكهربائي. وتتكون أبسط المغانط الكهربائية من ملف سلكي أسطواني يسمى الوشيعة، يسري فيه تيار كهربائي. فبسريان التيار الكهربائي في الوشيعة يصبح أحد طرفيها القطب الشمالي للمغنطيس الكهربائي والطرف الآخر القطب الجنوبي. وعند تغيير اتجاه سريان التيار ينعكس وضعا القطبين. وعند قطع التيار تفقد الوشيعة مغنطيسيتها.
وتحتوي العديد من المغانط الكهربائية على أسطوانة من مادة مغنطيسية لينة، مثل الحديد، داخل ملف سلكي، لتقوية المجال المغنطيسي الذي ينتجه المغنطيس الكهربائي.
وتعتمد قوة المغنطيس الكهربائي على عدد لفات الملف وقوة التيار الكهربائي. فكلما ازداد عدد اللفات، وازدادت قوة التيار، ازدادت شدة المجال المغنطيسي. وقد أمكن إنتاج مجالات تبلغ قوتها حوالي 25,000 جاوس (25 تسلا)، بإمرار تيار كهربائي بالغ القوة على ملف مصنوع من ألواح نحاسية. وتتطلب هذه المغانط نظم تبريد تضخ الماء عبر الملفات، وذلك لمنع الحرارة الناتجة عن التيار من صهر الألواح النحاسية. وتستخدم بعض المغانط الكهربائية، المسماة المغانط الفائقة التوصيل، ملفات توصل التيار دون فقدان طاقة، مما يجعلها مقاومة للتسخين. وتتكون أقوى المغانط الكهربائية، والتي يطلق عليها اسم المغانط الهجينة، من مغنطيس كهربائي مبرد بالماء داخل مغنطيس فائق التوصيل. وبإمكان هذه النبائط (الأدوات) إنتاج مجالات مغنطيسية تبلغ قوتها حوالي 350,000 جاوس (35 تسلا).
كيف تعمل المغنطيسية
تجارب حول المغنطيسية
المغنطيسية والكهرباء. للمغنطيسية علاقة قوية بالكهرباء، حيث يكوِّنان معًا قوة تسمى الكهرومغنطيسية، وهي من القوى الأساسية في الكون. فبإمكان مغنطيس متحرك بالقرب من ملف سلكي نحاسي، على سبيل المثال، حث (إنتاج) تيار كهربائي في الملف. وبنفس الطريقة يولد التيار الكهربائي المنساب عبر سلك مجالاً مغنطيسيًا حول السلك.
المغنطيسية في الذرات
تشتمل الذرات على منطقة مركزية صغيرة وكثيفة تسمى النواة، محاطة بجسيمات أخف، سالبة الشحنة، تسمى الإلكترونات. وتتكون النواة من البروتونات الموجبة الشحنة والنيوترونات التي لا تحمل أي شحنة كهربائية. وفي معظم الظروف تحتوي ذرات أي عنصر على عدد مساو من الإلكترونات والبروتونات، ولذلك تكون الذرات متعادلة كهربائيًا.
وتنطبق العلاقة بين المغنطيسية والكهرباء على الذرة أيضًا. فحركة الإلكترونات السالبة الشحنة حول النواة تولد تيارًا كهربائيًا ينتج مجالاً مغنطيسيًا. ولكن تأثير الإلكترونات المتحركة في اتجاه معين يساوي تأثير الإلكترونات المتحركة في الاتجاه المعاكس، ولذلك تلغي المجالات المغنطيسية للإلكترونات المتحركة بعضها بعضًا، وتصبح الذرة بلا مجال مغنطيسـي.
وبالإضافة إلى ذلك تدوِّم (تتحرك بسرعة) الإلكترونات حول محورها، منتجة تيارًا كهربائيًا ومجالاً مغنطيسيًا. ولكن في كل الذرات هناك إلكترون يدوِّم في اتجاه معين مقابل إلكترون يدوِّم في الاتجاه المعاكس، وبذلك تلغي المجالات المغنطيسية الناتجة عن الحركة الدوامية للإلكترونات المزدوجة بعضها بعضًا.
وتتغير الحركة المدارية الدوامية للإلكترونات المزدوجة قليلاً عند وضع الذرة في مجال مغنطيسي. ولذلك لا تلغي المجالات المغنطيسية للإلكترونات بعضها بعضًا، وتولد حركتها مجالاً مغنطيسيًا ضعيفًا مضادًا للمجال الخارجي، ويسمى هذا التأثير المغنطيسية المغايرة. وتتماسك الذرات المكونة لمعظم المركبات الكيميائية، بعضها مع بعض، بوصلات كيميائية تسمى الروابط، مكونة من إلكترونات مزدوجة. ونتيجة لذلك نجد أن معظم المركبات ـ بما فيها الماء والأملاح والسكر ـ مغايرة مغنطيسيًا. والمواد المغايرة مغنطيسيًا ضعيفة التنافر مع المغانط.
وفي بعض الذرات ـ بما فيها ذرات الكوبالت والحديد والنيكل والأكسجين وعنصر الجادولينيوم، الذي ينتمي إلى عناصر الأتربة النادرة ـ لا تزدوج الحركة الدوامية لبعض الإلكترونات، وتسمى مثل هذه الذرات ثنائيات القطب الذرية. وتميل هذه الذرات، مثل المغانط الأخرى، إلى الاصطفاف في خط مواز لخطوط المجال المغنطيسي الخارجي. ويسمى هذا الاصطفاف المغنطيسية المسايرة، ويؤدي إلى انجذاب ضعيف للذرات المفردة إلى المغانط.
الحجر المغنطيسي أول مغنطيس معروف يمكنه جذب المسامير والأشياء الصغيرة من الحديد والفولاذ.
مغنطيسية المواد. في بعض المواد المسايرة مغنطيسيًا تنتظم ثنائيات القطب الذرية في أنماط معينة بالنسبة لبعضها بعضًا. وتشمل هذه الانتظامات الانتظام المغنطيسي الحديداتي والانتظام المغنطيسي اللاحديداتي والانتظام المغنطيسي الحديديتي. ففي المواد المغنطيسية الحديداتية، مثل الحديد، يتجه ثنائي القطب الذري إلى نفس الاتجاه الذي تتجه إليه الثنائيات المجاورة. وينتج الانتظام المغنطيسي الحديداتي أقوى المواد المغنطيسية. وفي المواد المغنطيسية اللاحديداتية يتجه ثنائي القطب الذري إلى الاتجاه المعاكس لاتجاهات الثنائيات المجاورة، ولذلك ينتج الانتظام المغنطيسي اللاحديداتي مغانط ضعيفة. ويحدث الانتظام المغنطيسي الحديديتي في المواد المحتوية على أنواع متعددة من الذرات مثل المجنتيت وسبائك الحديديات. فهذه المواد تحتوي على عدد أكبر من الثنائيات المتجهة إلى اتجاه معين مقارنة بعدد الثنائيات المتجهة إلى الاتجاه الآخر. وهي قوية مغنطيسيًا.
وتستقر ثنائيات القطب ذرية للمواد المغنطيسية الحديداتية والمواد المغنطيسية الحديديتية في انتظام معين عندما تنخفض درجة حرارة المادة إلى مستوى أدنى من درجة حرارة الانتظام المغنطيسي أو نقطة كوري. وبالنسبة للمواد المغنطيسية اللاحديداتية تسمى هذه الدرجة درجة نيل. فدرجة حرارة الانتظام المغنطيسي للحديد مثلاً 770°م، والنيكل 358°م، والكوبالت 1121°م. وفوق هذه الدرجة تمنع الاهتزازات الذرية القوية الثنائيات القطبية من الانتظام، بعضها مع بعض، ونتيجة لذلك تكتسب هذه المواد خاصية الانجذاب المغنطيسي الضعيف الذي تتميز به المغنطيسية المسايرة.
وفي المواد المغنطيسية الحديداتية والمواد المغنطيسية الحديديتية تصطف ثنائيات القطب الذرية عادة لتكوِّن ثنائيات أكبر تسمى الميادين المغنطيسية، حيث تساوي قوة الميدان المغنطيسي حاصل جمع قوى الثنائيات الذرية المكونة لها. وقد تحتوي قطعة من مادة مغنطيسية على العديد من الميادين المغنطيسية. وتتجه الميادين عادة إلى اتجاهات مختلفة، وتميل إلى إلغاء بعضها بعضًا.
وتتمغنط المواد المغنطيسية الحديداتية والمواد المغنطيسية الحديديتية عند تعريضها لمجال مغنطيسي قوي، حيث تكبر الميادين الموازية للمجال باصطفاف مزيد من ثنائيات القطب الذرية موازية للمجال. وقد تصطف كل ثنائيات القطب الذرية إذا كان المجال المغنطيسي قويًا جدًا، وتتحول القطعة كلها إلى ميدان مغنطيسي واحد. وتبقى ميادين المادة المغنطيسية الصلبة مصطفة بعد إبعاد القطعة عن المجال المغنطيسي، وبذلك تتحول القطعة إلى مغنطيس دائم. أما المواد المغنطيسية اللينة فتصبح عديمة المغنطة عند إبعادها عن المجال، أي تعاود ميادينها المغنطيسية الأصلية تشكلها وتلغي بعضها بعضًا.
مغنطيسية الأجسام الفلكية
مغنطيسية الأرض. الأرض مغنطيس عملاق ذو قطبين يسميان القطب المغنطيسي الشمالي والقطب المغنطيسي الجنوبي، يقعان قرب القطبين الجغرافيين الشمالي والجنوبي على التوالي. ويجذب القطب المغنطيسي الشمالي القطب الشمالي لإبرة البوصلة، ويعني ذلك أن هذا القطب هو في الواقع القطب الجنوبي للمغنطيس الأرضي. والقطب المغنطيسي الجنوبي هو القطب الشمالي للمغنطيس الأرضي لأنه يتنافر مع القطب الشمالي لإبرة البوصلة.
وتبلغ قوة المجال المغنطيسي عند سطح الأرض، والذي يسمى المجال الجيومغنطيسي، حوالي 0,5 جاوس. ويتولد هذا المجال من التركيب الداخلي للأرض. فالأرض تتكون من عدة طبقات أعلاها القشرة، وهي الطبقة الخارجية التي نعيش عليها. ويقع تحت القشرة طبقة صخرية تسمى الوشاح، والتي تحيط بلب كثيف يتكون من جزء داخلي صلب وجزء خارجي سائل. ويعتقد العلماء أن المجال الجيومغنطيسي ينتج عن حركة الشحنات الكهربائية في اللب الخارجي السائل.
وقد وجد العلماء الذين درسوا حمم البراكين القديمة أن المجال الجيومغنطيسي يغير اتجاهه دوريًا، أي يتبادل القطبان المغنطيسيان الشمالي والجنوبي موقعيهما. فالحمم تحتوي على جسيمات دقيقة من مواد مغنطيسية صلبة. وعندما تكون الحمم ساخنة تكون هذه الجسيمات مسايرة مغنطيسيًا، ولذلك يظل تأثير المجال المغنطيسي الأرضي عليها ضعيفًا. وعندما تبرد الحمم إلى درجة حرارة تقل عن درجة حرارة الانتظام المغنطيسي تصطف هذه الجسيمات مع المجال الجيومغنطيسي مثل إبر البوصلة. ولذلك تترك الحمم سجلاً بالمجال الجيومغنطيسي الذي يتكون عندما تبرد هذه الحمم.
ويمتد المجال المغنطيسي الأرضي أيضًا في الفضاء، خارج نطاق الغلاف الجوي، ويسمى هناك الغلاف المغنطيسي. ويتداخل الغلاف المغنطيسي مع جسيمات مشحونة صادرة عن الشمس تسمى الرياح الشمسية، حيث ينتج عن هذا التداخل ظاهرة ضوئية تسمى الفلق، ونطاقان من الجسيمات المشحونة يسميان حزمتي فان ألن. انظر: فان ألن، أحزمة.
مغنطيسية الشمس
تتراوح القوة الإجمالية للمجال المغنطيسي الشمسي بين حوالي جاوس واحد وجاوسين. ولكن للشمس أيضًا مجالات مغنطيسية أقوى في مناطق باردة نسبيًا على سطحها تسمى البقع الشمسية، حيث تتراوح قوى المجالات المغنطيسية لهذه المناطق بين 250 و5000 جاوس. ومن الظواهر الشمسية الأخرى المرتبطة بالمجالات الشمسية القوية الوهج الشمسي، وهو انفجار ضوئي قوي، والشواظ الشمسي، الذي يتألف من قوس غازي ضخم.
مغنطيسية الأجسام الفلكية الأخرى
ليس للقمر في الواقع مجال مغنطيسي، لأنه لا يحتوي على لب سائل. ولكن الصخور القمرية التي نقلها رواد الفضاء إلى الأرض تثبت وجود مجال مغنطيسي قمري أقوى في وقت ما، مما يدل على أن القمر كان يحوي يومًا ما لبًا سائلاً. ولعطارد والزهرة والمريخ مجالات مغنطيسية أضعف من المجال المغنطيسي الأرضي. أما زحل والمشتري ونبتون وأورانوس فمجالاتها وأغلفتها المغنطيسية أقوى نسبيًا مقارنة بالمجال أو الغلاف المغنطيسي الأرضي.
ولبعض أنواع النجوم مجالات مغنطيسية أقوى بكثير من المجال المغنطيسي الشمسي. وتشمل هذه النجوم الأقزام البيضاء، التي تزيد قوى مجالاتها المغنطيسية عن مليون جاوس. وقد تصل قوة المجال المغنطيسي لنوع من النجوم المنهارة يسمى النجمة النيوترونية إلى حوالي 10 ترليونات جاوس.
المغانط في الكائنات الحية
اكتشف العلماء أن العديد من الحيوانات ـ مثل الحمام ونحل العسل والسالمون والتونة والدلفين والسلحفاة ـ لها القدرة على اكتشاف الغلاف المغنطيسي الأرضي، وقد تستخدمه في التعرف على مساراتها. فقد وجد العلماء جسيمات من المجنتيت في الأنسجة الجسمية لبعض هذه الحيوانات، ويساورهم الشك في أن هذه الجسيمات ربما تشكل جزءًا من نظام يستخدم في تحسس المجال الجيومغنطيسي.
ووجد العلماء أيضًا أن بعض أنواع البكتيريا في الماء تستخدم المجال الجيومغنطيسي للتعرف على مواطنها المفضلة، حيث يحتوي جسم البكتيريا المسماة البكتيريا المغنطيسية التوجيه على سلسلة واحدة أو أكثر من جسيمات المجنتيت. وتستخدم البكتيريا هذه الجسيمات ـ وكأنها إبر بوصلية دقيقة ـ في توجيه نفسها على امتداد خطوط المجال الجيومغنطيسي.
ويستخدم العلماء الرنين المغنطيسي النووي، أي التغييرات التي تحدث في المجال المغنطيسي للقوى المعرضة للموجات الراديوية، لدراسة تركيب الأنسجة الحية.